3.3.98 \(\int \frac {\sqrt {b \tan (e+f x)}}{(d \sec (e+f x))^{9/2}} \, dx\) [298]

Optimal. Leaf size=132 \[ \frac {8 E\left (\left .\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{15 d^4 f \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}+\frac {2 (b \tan (e+f x))^{3/2}}{9 b f (d \sec (e+f x))^{9/2}}+\frac {4 (b \tan (e+f x))^{3/2}}{15 b d^2 f (d \sec (e+f x))^{5/2}} \]

[Out]

-8/15*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*EllipticE(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2
))*(b*tan(f*x+e))^(1/2)/d^4/f/(d*sec(f*x+e))^(1/2)/sin(f*x+e)^(1/2)+2/9*(b*tan(f*x+e))^(3/2)/b/f/(d*sec(f*x+e)
)^(9/2)+4/15*(b*tan(f*x+e))^(3/2)/b/d^2/f/(d*sec(f*x+e))^(5/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 132, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2692, 2696, 2721, 2719} \begin {gather*} \frac {8 E\left (\left .\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{15 d^4 f \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)}}+\frac {4 (b \tan (e+f x))^{3/2}}{15 b d^2 f (d \sec (e+f x))^{5/2}}+\frac {2 (b \tan (e+f x))^{3/2}}{9 b f (d \sec (e+f x))^{9/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*Tan[e + f*x]]/(d*Sec[e + f*x])^(9/2),x]

[Out]

(8*EllipticE[(e - Pi/2 + f*x)/2, 2]*Sqrt[b*Tan[e + f*x]])/(15*d^4*f*Sqrt[d*Sec[e + f*x]]*Sqrt[Sin[e + f*x]]) +
 (2*(b*Tan[e + f*x])^(3/2))/(9*b*f*(d*Sec[e + f*x])^(9/2)) + (4*(b*Tan[e + f*x])^(3/2))/(15*b*d^2*f*(d*Sec[e +
 f*x])^(5/2))

Rule 2692

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(a*Sec[e +
f*x])^m)*((b*Tan[e + f*x])^(n + 1)/(b*f*m)), x] + Dist[(m + n + 1)/(a^2*m), Int[(a*Sec[e + f*x])^(m + 2)*(b*Ta
n[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && (LtQ[m, -1] || (EqQ[m, -1] && EqQ[n, -2^(-1)])) && Integ
ersQ[2*m, 2*n]

Rule 2696

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[a^(m + n)*((b
*Tan[e + f*x])^n/((a*Sec[e + f*x])^n*(b*Sin[e + f*x])^n)), Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x], x]
 /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rubi steps

\begin {align*} \int \frac {\sqrt {b \tan (e+f x)}}{(d \sec (e+f x))^{9/2}} \, dx &=\frac {2 (b \tan (e+f x))^{3/2}}{9 b f (d \sec (e+f x))^{9/2}}+\frac {2 \int \frac {\sqrt {b \tan (e+f x)}}{(d \sec (e+f x))^{5/2}} \, dx}{3 d^2}\\ &=\frac {2 (b \tan (e+f x))^{3/2}}{9 b f (d \sec (e+f x))^{9/2}}+\frac {4 (b \tan (e+f x))^{3/2}}{15 b d^2 f (d \sec (e+f x))^{5/2}}+\frac {4 \int \frac {\sqrt {b \tan (e+f x)}}{\sqrt {d \sec (e+f x)}} \, dx}{15 d^4}\\ &=\frac {2 (b \tan (e+f x))^{3/2}}{9 b f (d \sec (e+f x))^{9/2}}+\frac {4 (b \tan (e+f x))^{3/2}}{15 b d^2 f (d \sec (e+f x))^{5/2}}+\frac {\left (4 \sqrt {b \tan (e+f x)}\right ) \int \sqrt {b \sin (e+f x)} \, dx}{15 d^4 \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}\\ &=\frac {2 (b \tan (e+f x))^{3/2}}{9 b f (d \sec (e+f x))^{9/2}}+\frac {4 (b \tan (e+f x))^{3/2}}{15 b d^2 f (d \sec (e+f x))^{5/2}}+\frac {\left (4 \sqrt {b \tan (e+f x)}\right ) \int \sqrt {\sin (e+f x)} \, dx}{15 d^4 \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}\\ &=\frac {8 E\left (\left .\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{15 d^4 f \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}+\frac {2 (b \tan (e+f x))^{3/2}}{9 b f (d \sec (e+f x))^{9/2}}+\frac {4 (b \tan (e+f x))^{3/2}}{15 b d^2 f (d \sec (e+f x))^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 11.07, size = 92, normalized size = 0.70 \begin {gather*} \frac {b (17+5 \cos (2 (e+f x))) \sin ^2(e+f x)-24 b \, _2F_1\left (-\frac {1}{4},\frac {1}{4};\frac {3}{4};\sec ^2(e+f x)\right ) \sqrt [4]{-\tan ^2(e+f x)}}{45 d^4 f \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*Tan[e + f*x]]/(d*Sec[e + f*x])^(9/2),x]

[Out]

(b*(17 + 5*Cos[2*(e + f*x)])*Sin[e + f*x]^2 - 24*b*Hypergeometric2F1[-1/4, 1/4, 3/4, Sec[e + f*x]^2]*(-Tan[e +
 f*x]^2)^(1/4))/(45*d^4*f*Sqrt[d*Sec[e + f*x]]*Sqrt[b*Tan[e + f*x]])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.39, size = 586, normalized size = 4.44

method result size
default \(\frac {\left (-5 \sqrt {2}\, \left (\cos ^{5}\left (f x +e \right )\right )+12 \sqrt {-\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \cos \left (f x +e \right )-24 \sqrt {-\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \cos \left (f x +e \right )+12 \sqrt {-\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )-24 \sqrt {-\frac {i \left (\cos \left (f x +e \right )-1\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )-\left (\cos ^{3}\left (f x +e \right )\right ) \sqrt {2}-6 \cos \left (f x +e \right ) \sqrt {2}+12 \sqrt {2}\right ) \sqrt {\frac {b \sin \left (f x +e \right )}{\cos \left (f x +e \right )}}\, \sqrt {2}}{45 f \left (\frac {d}{\cos \left (f x +e \right )}\right )^{\frac {9}{2}} \cos \left (f x +e \right )^{4} \sin \left (f x +e \right )}\) \(586\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(9/2),x,method=_RETURNVERBOSE)

[Out]

1/45/f*(-5*2^(1/2)*cos(f*x+e)^5+12*(-I*(cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e
))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1
/2),1/2*2^(1/2))*cos(f*x+e)-24*(-I*(cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(
1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),
1/2*2^(1/2))*cos(f*x+e)+12*(-I*(cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)
*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*
2^(1/2))-24*(-I*(cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e
)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))-2^(1/2
)*cos(f*x+e)^3-6*cos(f*x+e)*2^(1/2)+12*2^(1/2))*(b*sin(f*x+e)/cos(f*x+e))^(1/2)/(d/cos(f*x+e))^(9/2)/cos(f*x+e
)^4/sin(f*x+e)*2^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(9/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(f*x + e))/(d*sec(f*x + e))^(9/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.12, size = 135, normalized size = 1.02 \begin {gather*} \frac {2 \, {\left ({\left (5 \, \cos \left (f x + e\right )^{4} + 6 \, \cos \left (f x + e\right )^{2}\right )} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{\cos \left (f x + e\right )}} \sin \left (f x + e\right ) + 6 i \, \sqrt {-2 i \, b d} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) - 6 i \, \sqrt {2 i \, b d} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right )\right )}}{45 \, d^{5} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(9/2),x, algorithm="fricas")

[Out]

2/45*((5*cos(f*x + e)^4 + 6*cos(f*x + e)^2)*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(d/cos(f*x + e))*sin(f*x + e
) + 6*I*sqrt(-2*I*b*d)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(f*x + e) + I*sin(f*x + e))) - 6*I*s
qrt(2*I*b*d)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(f*x + e) - I*sin(f*x + e))))/(d^5*f)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))**(1/2)/(d*sec(f*x+e))**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(f*x+e))^(1/2)/(d*sec(f*x+e))^(9/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*tan(f*x + e))/(d*sec(f*x + e))^(9/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {b\,\mathrm {tan}\left (e+f\,x\right )}}{{\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{9/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(e + f*x))^(1/2)/(d/cos(e + f*x))^(9/2),x)

[Out]

int((b*tan(e + f*x))^(1/2)/(d/cos(e + f*x))^(9/2), x)

________________________________________________________________________________________